首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2346篇
  免费   223篇
  国内免费   1篇
  2023年   10篇
  2022年   7篇
  2021年   30篇
  2020年   29篇
  2019年   42篇
  2018年   35篇
  2017年   37篇
  2016年   80篇
  2015年   125篇
  2014年   138篇
  2013年   153篇
  2012年   209篇
  2011年   155篇
  2010年   115篇
  2009年   84篇
  2008年   128篇
  2007年   135篇
  2006年   137篇
  2005年   126篇
  2004年   113篇
  2003年   116篇
  2002年   128篇
  2001年   26篇
  2000年   16篇
  1999年   26篇
  1998年   32篇
  1997年   18篇
  1996年   17篇
  1995年   19篇
  1994年   21篇
  1993年   24篇
  1992年   23篇
  1991年   17篇
  1990年   9篇
  1989年   9篇
  1988年   12篇
  1987年   8篇
  1986年   15篇
  1985年   7篇
  1984年   12篇
  1982年   8篇
  1981年   7篇
  1980年   11篇
  1979年   9篇
  1978年   9篇
  1977年   8篇
  1976年   17篇
  1974年   6篇
  1973年   9篇
  1967年   5篇
排序方式: 共有2570条查询结果,搜索用时 78 毫秒
61.
Antibiotic resistance necessitates the search for new bioactive compounds with novel mechanisms of action. Natural products derived from bacteria and fungi are widely used in the field of medicine and new environments can be explored as sources of antimicrobials. Bacteria associated with springtails have shown high inhibitory activity against pathogens. Here, we characterized a bacterial strain with high potential for antimicrobial activity, isolated from the gut of the springtail Folsomia candida Willem (Collembola: Isotomidae). The strain was characterized using the ‘analytical profile index’ and the ‘minimal inhibitory concentration’ assay to test for antibiotic resistance. Agar overlay and agar disk diffusion assays were used to test the inhibitory activity of the strain and its extract against a variety of pathogens, and reporter assays were used to investigate the mode of action. High‐performance liquid chromatography was used to analyze and fractionate the extract of bacterial culture, followed by additional assays on the fractions. The genome of the strain was screened for presence of antibiotic resistance genes and secondary metabolite gene clusters. The isolate was identified as Bacillus toyonensis Jiménez et al., but it displayed differences in metabolic profile when compared to the type species. The isolate was highly resistant to penicillin and inhibited the growth of a variety of pathogenic microorganisms. Genome analysis revealed an enrichment of resistance genes for β‐lactam antibiotics compared to the type isolate. Also, secondary metabolite clusters involved in the production of siderophores, bacteriocins, and nonribosomal peptide synthetases were identified. In conclusion, a unique Bacillus strain was isolated from the gut of F. candida, for which we provide evidence of inhibitory activity against an array of pathogens. This, coupled with high resistance to penicillin as substantiated by the presence of resistance genes, points to the potential of B. toyonensis VU‐DES13 to provide a new source of antimicrobial compounds.  相似文献   
62.
In nature, crops encounter a combination of abiotic stresses that severely limit yield. Our aim was to dynamically expose the changes of tomatoes' physiological parameters to drought, heat and their combination and thereby clarify the relationship between the responses to single and combined stress. We studied the effect of single and combined drought and heat stresses on the shoot and root of two tomato cultivars (Sufen No.14 as CV1; Jinlingmeiyu as CV2). After being exposed to combined stress for 6 days, the dry weight of shoot and root significantly decreased. The Fq′/Fm′ (quantum yield of photosystem II) was significantly lower in CV1 upon drought and combined stress and in CV2 subjected to combined stress (between days 4 and 6) compared to control. The relative water content during combined stress was significantly lower than control from day 4 to recovery day 2. On days 3 and 6, the water loss rate significantly increased under heat stress and decreased at drought and combined stress, respectively. The combined stress caused severe damages on photosystem II and chloroplast ultrastructure. The root activity after stress recovered even though drought significantly increased the activity from day 2 to day 6. Combined stress result in complex responses during tomato growth. The CV1 was more heat tolerant than CV2, but there was no varietal difference at drought and combined stress. This study contributes to the understanding of the underlying physiological response mechanism of plant to combined stress and crop improvement by providing valuable information for abiotic stress‐tolerant tomato breeding.  相似文献   
63.
64.
Plant responses to mechanical stress (e.g. wind or touch) involve a suite of physiologic and developmental changes, collectively known as thigmomorphogenesis, including reductions in height increment, Young's modulus of stems, shoot growth, and seed production, and increased stem girth and root growth. A role of the phytohormone ethylene in thigmomorphogenesis has been proposed but the extent of this involvement is not entirely clear. To address this issue, wild-type (WT) and ethylene-insensitive transgenic (Tetr) tobacco ( Nicotianum tabacum ) plants were subjected to three levels of mechanical stress: 0, 25 and 75 daily flexures. Flexed plants produced shorter, thicker stems with a lower Young's modulus than non-flexed ones, and these responses occurred independently of genotype. This suggests that ethylene does not play a role in thigmomorphogenesis-related changes in stem characteristics in tobacco. The effect of mechanical stress on dry mass increment (growth), on the other hand, differed between the genotypes: in the WT plants, shoot growth but not root growth was reduced under mechanical stress, resulting in reduced total growth and increased root mass fractions. In the Tetr plants, neither shoot nor root growth were affected. This suggests that ethylene is involved in the inhibition of tobacco shoot growth under mechanical stress.  相似文献   
65.
We have explored proteins related to mild cognitive impairment (MCI). The serum proteome of 35 amnestic MCI patients and 35 cognitively healthy persons was investigated by LC MS. We identified 108 differentially expressed peptides between MCI patients and controls, belonging to 39 proteins. Eight proteins were selected for further investigation by quantitative protein measurements using a MRM assay; apolipoprotein E, carboxypeptidase N subunit 2, complement factor B (CFAB), galectin‐3 binding protein (LG3BP), lumican, serum amyloid A‐4 protein (SAA4), serum amyloid P‐component, and sex hormone binding globulin. Results of the quantitative protein measurements showed significantly decreased levels of carboxypeptidase N subunit 2, CFAB, LG3BP, SAA4, and serum amyloid P‐component in serum from amnestic MCI patients compared with cognitive healthy controls (two‐sided t‐test; p < 0.05). Apolipoprotein E and lumican showed no significant difference in protein levels, sex hormone binding globulin could not be quantified since the MRM assay did not reach the required sensitivity. A model based on the three most significantly decreased proteins (CFAB, LG3BP, and SAA4) showed a sensitivity and specificity of 73 and 66%, respectively, for the initial sample set. A small external validation set yielded 77% sensitivity and 75% specificity.  相似文献   
66.
Human cytomegalovirus (HCMV) forms two gH/gL glycoprotein complexes, gH/gL/gO and gH/gL/pUL(128,130,131A), which determine the tropism, the entry pathways and the mode of spread of the virus. For murine cytomegalovirus (MCMV), which serves as a model for HCMV, a gH/gL/gO complex functionally homologous to the HCMV gH/gL/gO complex has been described. Knock-out of MCMV gO does impair, but not abolish, virus spread indicating that also MCMV might form an alternative gH/gL complex. Here, we show that the MCMV CC chemokine MCK-2 forms a complex with the glycoprotein gH, a complex which is incorporated into the virion. We could additionally show that mutants lacking both, gO and MCK-2 are not able to produce infectious virus. Trans-complementation of these double mutants with either gO or MCK-2 showed that both proteins can promote infection of host cells, although through different entry pathways. MCK-2 has been extensively studied in vivo by others. It has been shown to be involved in attracting cells for virus dissemination and in regulating antiviral host responses. We now show that MCK-2, by forming a complex with gH, strongly promotes infection of macrophages in vitro and in vivo. Thus, MCK-2 may play a dual role in MCMV infection, as a chemokine regulating the host response and attracting specific target cells and as part of a glycoprotein complex promoting entry into cells crucial for virus dissemination.  相似文献   
67.
Breast cancer is a very heterogeneous disease, encompassing several intrinsic subtypes with various morphological and molecular features, natural history and response to therapy. Currently, molecular targeted therapies are available for estrogen receptor (ER) and human epidermal growth factor receptor 2 (Her2)-positive breast tumors. However, a significant proportion of primary breast cancers are negative for ER, progesterone receptor (PgR), and Her2, comprising the triple negative breast cancer (TNBC) group. Women with TNBC have a poor prognosis because of the aggressive nature of these tumors and current lack of suitable targeted therapies. As a consequence, the identification of novel relevant protein targets for this group of patients is of great importance. Using a systematic two dimensional (2D) gel-based proteomic profiling strategy, applied to the analysis of fresh TNBC tissue biopsies, in combination with a three-tier orthogonal technology (two dimensional PAGE/silver staining coupled with MS, two dimensional Western blotting, and immunohistochemistry) approach, we aimed to identify targetable protein markers that were present in a significant fraction of samples and that could define therapy-amenable sub-groups of TNBCs. We present here our results, including a large cumulative database of proteins based on the analysis of 78 TNBCs, and the identification and validation of one specific protein, Mage-A4, which was expressed in a significant fraction of TNBC and Her2-positive/ER negative lesions. The high level expression of Mage-A4 in the tumors studied allowed the detection of the protein in the tumor interstitial fluids as well as in sera. The existence of immunotherapeutics approaches specifically targeting this protein, or Mage-A protein family members, and the fact that we were able to detect its presence in serum suggest novel management options for TNBC and human epidermal growth factor receptor 2 positive/estrogen receptor negative patients bearing Mage-A4 positive tumors.Breast cancer, although a very heterogeneous disease, can be divided into three therapeutically relevant fundamental disease entities, simply based on estrogen receptor (ER) and human epidermal growth factor receptor 2 (Her2)1 status (i.e. ER+ and/or Her2+, and ERHer2), as the major currently available breast cancer therapeutic options are based on the ability to target these proteins. Hormone receptor positive and hormone receptor negative breast cancers are disease entities with distinct morphological, genetic and biological behavior (1). Hormone receptor negative tumors, which constitute ∼30% of primary breast cancers, tend to be high-grade, more frequently BRCA1 and TP53 mutated, and, more importantly, are not amenable to endocrine therapy. Her2 is amplified in ∼18–20% of breast cancers, and is more frequently observed in hormone receptor negative tumors. Her2 amplification is associated with worse prognosis (higher rate of recurrence and mortality) in patients with newly diagnosed breast cancer who do not receive any adjuvant systemic therapy. Her2 status is also predictive for several systemic therapies, particularly for agents that target Her2. The development of a humanized monoclonal antibody against Her2 (trastuzumab) has resulted in reduction of the risk of recurrence and mortality in patients with Her2 amplification (2, 3). Although trastuzumab is considered one of the most effective targeted therapies currently available in oncology, a significant number of patients with Her2-overexpressing breast cancer do not benefit from it (4, 5).Breast tumors that do not express ER, PgR, or Her2 (ER PgR Her2), as determined by immunohistochemistry (IHC), are generally referred to as triple negative breast cancers (TNBCs), and they are not candidates for targeted therapies (endocrine therapy or trastuzumab). Although TNBCs account for a relatively small proportion of breast cancer cases (10–15%), they are responsible for a disproportionate number of breast cancer deaths. TNBC tumors form a recognizable prognostic group of breast cancer with aggressive behavior that currently lacks the benefit of available systemic therapy (68). Given the need to develop molecular criteria to reproducibly categorize molecular breast tumor subtypes at the protein level and the lack of targeted therapies available to treat patients bearing TNBCs, we have implemented a systematic proteomics approach to identify, characterize, and evaluate proteins present in triple-negative tumors that could constitute an appropriate therapeutic target for the clinical management of this group of patients. To this end, based on the analysis of 78 individual TNBC samples, we have established a large, cumulative, 2D-PAGE database of proteins expressed by TNBCs, including some that could be of potential therapeutic value. Comparison of this TNBC protein database with protein databases of other breast cancer subtypes previously established by our laboratory allowed us to single out a number of proteins preferentially expressed in TNBCs for which targeted therapeutics exist. In this report we further focused on the characterization of one such target, the cancer/testis antigen, melanoma-associated antigen 4 - Mage-A4.Cancer/testis antigens (CTAs) are expressed in a large variety of tumor types, whereas their expression in normal tissues is restricted to male germ cells, which are immune-privileged because of their lack of or low expression of human leukocyte antigen (HLA) molecules (9). Several studies have shown the existence of natural cellular and humoral responses against some CTAs, indicating that they are appropriate targets for vaccine-based cancer immunotherapy (1012). So far, the use of CTAs in immunotherapeutic approaches to cancer treatment has been tested in more than 60 early phase clinical trials, with varying success, and a few candidate products have reached late-stage clinical trials. One such candidate vaccine, Astuprotimut-R (GSK-249553), a Mage-A3 antigen-specific cancer immunotherapeutic agent, is currently under clinical evaluation by GlaxoSmithKline in the largest-ever treatment trial in lung cancer, called MAGRIT (Mage-A3 as Adjuvant nonsmall cell lunG canceR ImmunoTherapy) (13).At present, CTAs comprise about 150 members, more than half of which are encoded by large, recently expanded families on chromosome X (14; see also CTDatabase at www.cta.lncc.br; last accessed 01.09.2012). These genes are organized into clusters and have undergone rapid evolution, possibly because of positive selection. The biological functions of CTAs are not fully understood, but emerging evidence suggest that they direct the proliferation, differentiation, and survival of human germ line cells and may have similar effect in cancer cells. Mage-A4 protein belongs to the Mage-A family of CT antigens. The Mage-A family is composed by 12 proteins (14, 15) and many members of the Mage-A family of CTAs have been associated with cancer, including breast cancer (14, 16, 17). However, past studies reported mostly on MAGE genes rather than protein expression, or on the expression of Mage protein families and not on any given specific protein.In this paper we describe the identification of Mage-A4 in breast tumor biopsies using 2D PAGE coupled with MS proteomics, and follow the protein localization from the tumor cells, to the tumor microenvironment, and to the serum of a patient. Using a three-tier orthogonal technology approach that combined 2D PAGE silver staining coupled with MS, with 2D Western blotting, and IHC, we showed that high level Mage-A4 expression in breast tumors occurs almost exclusively in the receptor negative disease (TNBC and Her2+ERPgR). The existence of immunotherapeutic approaches targeting MAGE protein family members (Mage-A4 specific or with broader specificity) and the fact that we were able to detect its presence in serum suggest novel management options for patients bearing Mage-A4 positive TNBCs and Her2+ERPgR tumors.  相似文献   
68.
69.
Collagen is the main load bearing protein in many soft tissues, and in cardiovascular tissues in particular. In many tissues collagen has a specific architecture that is crucial for the biomechanical function of the tissue. Typical examples are the hammock-shaped collagen architecture in heart valves and a helical pattern in arteries. One of the objectives in cardiovascular tissue engineering is the reconstitution of this architecture. It is hypothesized that the architecture is mediated by mechanical stimulation. Computational models were developed to predict the mechanoregulation of the collagen architecture. This review recapitulates the key modeling assumptions and results achieved to date.  相似文献   
70.
Inflammatory bowel diseases (IBD) is the result of dysregulation of mucosal innate and adaptive immune responses. Factors such as genetic, microbial and environmental are involved in the development of these disorders. Accordingly, animal models that mimic human diseases are tools for the understanding the immunological processes of the IBD as well as to evaluate new therapeutic strategies. Crotoxin (CTX) is the main component of Crotalus durissus terrificus snake venom and has an immunomodulatory effect. Thus, we aimed to evaluate the modulatory effect of CTX in a murine model of colitis induced by 2,4,6- trinitrobenzene sulfonic acid (TNBS). The CTX was administered intraperitoneally 18 hours after the TNBS intrarectal instillation in BALB/c mice. The CTX administration resulted in decreased weight loss, disease activity index (DAI), macroscopic tissue damage, histopathological score and myeloperoxidase (MPO) activity analyzed after 4 days of acute TNBS colitis. Furthermore, the levels of TNF-α, IL-1β and IL-6 were lower in colon tissue homogenates of TNBS-mice that received the CTX when compared with untreated TNBS mice. The analysis of distinct cell populations obtained from the intestinal lamina propria showed that CTX reduced the number of group 3 innate lymphoid cells (ILC3) and Th17 population; CTX decreased IL-17 secretion but did not alter the frequency of CD4+Tbet+ T cells induced by TNBS instillation in mice. In contrast, increased CD4+FoxP3+ cell population as well as secretion of TGF-β, prostaglandin E2 (PGE2) and lipoxin A4 (LXA4) was observed in TNBS-colitis mice treated with CTX compared with untreated TNBS-colitis mice. In conclusion, the CTX is able to modulate the intestinal acute inflammatory response induced by TNBS, resulting in the improvement of clinical status of the mice. This effect of CTX is complex and involves the suppression of the pro-inflammatory environment elicited by intrarectal instillation of TNBS due to the induction of a local anti-inflammatory profile in mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号